

Single Top Quark Physics at the Tevatron and Beyond

Catalin Ciobanu, University of Illinois, CDF

For the LHC part, valuable help received from:

Sergey Sablospitsky, IHEP Protvino, CMS Dugan O'Neil, Simon Fraser Univ., ATLAS

WIN'03, October 7, 2003

Single Top Production

- Why look for single top:
 - Cross section ~ | V_{tb} |²: the only way to directly measure CKM matrix el. V_{tb}
 - Single top is background to other signals: e.g. Higgs searches.
 - Test non-SM phenomena:
 - ➢ Heavy W' boson
 - Anomalous Wtb couplings
 - > FCNC couplings tug or tcg
- At the Tevatron relevant channels are:
 - t-channel W-gluon fusion:
 - > 1.98 pb at √s=1.96 TeV
 - Hard b-jet, W decay products, soft b (usually lost), light quark jet
 - s-channel W*:
 - > 0.88 pb at √s=1.96 TeV
 - > Two hard b-jets, W decay products
 - B.W. Harris et al.: Phys. Rev. D 66, 054024 (theoretical calculations)

From Run I to Run II

- Results at $\sqrt{s} = 1.8$ TeV from CDF and D \varnothing :
 - → Single top has not been observed; 95% CL limits were set:
 - 7 t-channel: DØ limit: 22 pb, CDF limit: 13 pb (theoretical x-section: 1.40 pb)
 - ✓ s-channel: DØ limit: 17 pb, CDF limit: 18 pb (theoretical x-section: 0.76 pb)
 - combined s- and t- channels search: CDF limits: 14 pb (H_T, M_{Inb})
 - \nearrow most recent Run 1 CDF study finds a 2.2 σ excess and limit of 24 pb (7-inp NN)
 - DØ:Phys. Lett. B 517, 282 (2001); CDF: PRD65, 091102 (2002), C. Ciobanu's Ph.D. thesis

For Run II:

- → Higher rate: 32% increase in the combined s and t channel x-section:
 - > still small: 2.9 pb versus 6.7 pb for top pair production
- ✓ More luminosity right now CDF has 180 pb⁻¹ that is 70% more data!
- Better detector acceptance
- → Preliminary CDF analysis done for 107 pb⁻¹ of data:
 - > Search for s- and t-channels combined production
 - Seaparate search for t-channel

Combined Search

- Look in the W+2 tight jets channel:
 - **7** "tight" jet: E_T > 15 GeV, |η| < 2.8
 - at least one SVX B-tag
 - **7** exactly one lepton with $E_T > 20$ GeV, $|\eta| < 2.0$
 - → missing energy: E_T>20 GeV
 - → veto Z's, dilepton events
 - → apply a top mass window cut: 140 < M_{Inb} <210 GeV/c²
 </p>
- Monte Carlo samples:
 - single top signal:
 - Pythia (1M events)
 - Madevent+Pythia (~200k)
 - HERWIG tt background
 - ALPGEN+HERWIG Wbb used to model the shapes of the non-top backgrounds: Wbb, Wcc, Wc, mistags, non-W events

Expected Yield

- For L=107.1 pb⁻¹:
 - expect 2.4 signal events
 - expect 16.1 backgrd events
 - → observe 19 (expect 18.5)
- The variable with the most discrimination power is H_T, the total transverse energy in the event:
 - Will fit the H_T shape in data as the sum of weighted MC shapes.
 - Use maximum likelihood method with Gaussian background constraints

Process	N in 107.1 pb ⁻¹
W-gluon	1.61 ± 0.51
W*	0.80 ± 0.18
tt	2.33 ± 0.70
Wbb	3.5 ± 1.5
Wcc	1.4 ± 0.8
Wc	3.1 ± 1.0
Mistags	2.9 ± 0.9
Non-W	2.2 ± 0.7
Diboson	$\textbf{0.7} \pm \textbf{0.2}$
Z+bb	$\textbf{0.07} \pm \textbf{0.03}$
Total non-top	13.8± 2.8

Fitting H_T distributions

- H_T distributions for signal and backgrounds:
 - signal shapes similar for s- and t- channels
 - 7 fit yields 2.9±4.5 signal events (exp. 2.4 events).

95% C.L. limit

- Limit at 95% C.L. is 17.5 pb
- This accounts for the systematics:
 - → Jet E_T scale: 20.9%
 - → ISR/FSR: 4.0%
 - **对** Top Mass: 6.2%
 - PDF, signal generator, background model 1-2%
- Compare to Run I:
 - → Same luminosity 107 vs 106 (pb⁻¹)
 - → 14 pb limit for 2.16 pb x-section
 - Now: 17.5 pb limit for 2.86 pb x-s.

marginally better limit!

Several ways to improve this will be discussed later.

Separate Search

- Looking for the two signal channels individually is desired:
 - Different sensitivities to new physics:
 - > s-channel: heavy charged vector bosons W', CP-violation effects within MSSM, Kaluza-Klein excited W-boson within MSSM
 - ➤ t-channel: FCNC couplings, anomalous V+A contributions to the W-t-b vertex, etc.
 - \triangleright To go back to extracting V_{tb} we will have to know the individual rates
- We use the same selection as in the combined search.
 - → However, using H_T is no longer appropriate.
 - **A** variable with good W* W-gluon separation potential is Q x η, where Q is the lepton charge and η the pseudorapidity of the non-b jet.
 - → Now treat W* as a background, therefore perform a 4-component fit.

Fitting Q×η

- t-channel exhibits an asymmetry toward Qxη positive values (twice as many events than in the negative Qxη range)
- fit to data yields: 1.9± 3.7 t-channel signal events (exp. 1.6 events).

95% C.L. limit

- Limit at 95% C.L. is 15.4 pb
- This accounts for the systematics:
 - → Jet E_T scale: 21.5%
 - → Signal generator: 21.1%
 - → Background model: 43.0%
 - ✓ ISR/FSR: 6.9%
 - Top Mass: 6.7%
 - **7** PDF 4.3%
- Compare to Run I:
 - 13 pb limit for 1.40 pb x-section
 - → Now: 15.4 pb limit for 1.98 pb x-s.

CDF Run II preliminary kelihood 0.2 σ < 15.4 pb at 95% C.L. 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 $\beta_{95} = 7.78$ 0.02 6 14 16 12

Single Top t-Channel Posterior

again a better limit!

Future Prospects

In progress: Neural Network with 5 input variables: H_T, E_T(j1), E_T(j2), E_T, P_T(j1-j2), Looking in the W+2j channel, no M_{Inb} cut Assuming the background uncertainties will scale as L^{-1/2}

- Right now: 3 sigma with 2.5 fb⁻¹
- Improvements to come. We try:
 - ✓ Soft lepton tagger, Jet Prob. tagger
 - Use of forward electrons
 - Better discriminant variables:
 - Matrix elements (or ratios of these)
 - Use the top mass hypothesis to constrain the event
 - ➤ Will lead to better M_{Inh} resolution
 - Better understanding of the systematic uncertainties is crucial.

Single Top at the LHC

- LHC will be a top quark factory:
 - → 8 million top pairs per experiment per year (10 fb⁻¹ / year)
 - **>** Some cross section values for \sqrt{s} = 14 TeV:
 - ➤ top pair production: ~ 800 pb (mostly via gluon-gluon fusion).
 - > t-channel single top: 153 (top) and 90 (antitop) = 243 pb
 - e.g. per day ~6000 events, at 10³³cm⁻²s⁻¹
 - > s-channel single top: 6.6 (top) and 4.8 (antitop) = 11 pb
 - associated Wt production: 50-60 pb
 - Negligible at the Tevatron

Will discuss each of the three modes in what follows

t-channel single top (CMS)

- CMS study (hep-ph/0003033):
 - Full calorimeter simulation + b-tag efficiency parametrization
 - Pythia 5.72 signal, tt, WZ; Vecbos+Herwig W+jets. Selection:
 - \triangleright One isolated lepton with P_T>20 GeV/c, $|\eta|$ <2.5
 - ightharpoonup Missing E_T>20 GeV, 50 < M_{Iv} <100 GeV/c²
 - \triangleright Two jets with E_T > 20 GeV, $|\eta|$ < 4.0
 - **>** One jet: E_T > 20 GeV, $|\eta|$ < 2.5, the other E_T > 50 GeV, 2.5< $|\eta|$ < 4.0
 - Leading jet E_T<100 GeV (to reduce tt)</p>
 - > Exactly one b-tagged jet the central one
 - ➤ Reject WZ candidates with: 80 < M_{ii} <100 GeV/c²
 - → Signal peak visible in reconstructed M_{top} distribution
 - ✓ With 10 fb⁻¹, $\sqrt{(S+B)/S} = 1.4\%$
- The quest continues newer det. simulation
 - use fancier generators: TopRex, Single Top
 - **对** Work-in-progress, unofficial results $\delta \sigma$ / σ ~ 10%

t-channel single top (ATLAS)

- ATLAS study of W-gluon single top (Dugan O'Neil's Ph.D. thesis):
 - ATLFAST parametrized detector simulation
 - 🗖 Onetop+Pythia 5.72 signal, tt; M.E.+HERWIG Wbb, Wjj
 - Selections are rather similar to CMS study, plus:
 - > 150<M_{top}<200 GeV/c²
 - ightharpoonup Result: $\sqrt{(S+B)/S} = 0.9\%$ with 10 fb⁻¹.
- What about V_{tb} ? Extracting $|V_{tb}|^2$ from x-section picks up uncertainties:
 - x-section uncertainty:
 - Statistical: 5% is a perhaps reasonable/optimistic guess for L=10 fb⁻¹
 - > Systematic <20%. Here things can easily be off by a lot, especially in the 1st year...
 - Luminosity uncertainty: traditionally 4-5%
 - Theoretical uncertainty:
 - > From factorization and renormalization scale dependence (3% from NLO calculation)

s-channel single top (CMS)

- CMS study (S. Sablospitsky, CMS week 9/17/03)
 - disclaimer: work-in-progress, not yet 'official' results
 - use TopRex to generate single top, tt, Wbb. Pythia W+jets. Use CMSJET 4.801
 - selection:
 - \triangleright one lepton with E_T>10 GeV, $|\eta|$ <2.5
 - \triangleright 2 B-tags with E_T>20 GeV, no other jets with E_T>20GeV
 - Vector sum all final state P_T: |ΣP_T|<15 GeV</p>
 - ➤ Reconst. top mass: 150 GeV<M_{top}<200 GeV/c²
 - > Results: $\sqrt{(S+B)/S} = 12\%$, S/B = 8% for L = 30 fb⁻¹
 - \triangleright which implies $\delta |V_{tb}| = 8.3\%$

s-channel single top (ATLAS)

- ATLAS study (hep-ph/0003033)
 - Onetop+Pythia 5.72 signal, tt; M.E.+HERWIG Wbb, Wjj
 - Selection:
 - \triangleright One isolated lepton with P_T>20 GeV/c, $|\eta|$ <2.5
 - ➤ 2 b-jets with E_T>75 GeV
 - > Scalar sum all final state P_T : $|\Sigma P_T| < 175 GeV$
 - ➤ Reconst. top mass: 150 GeV<M_{top}<200 GeV/c²
 - **7** Results: $\sqrt{(S+B)/S}$ = 5.5% for L = 30 fb⁻¹, $\delta |V_{tb}|$ ~1%

- Wt single top production at ATLAS: 0.04
 - → 65 < M_{ii} < 95 GeV/c²
 </p>
 - ▼ Event invariant mass < 300 GeV/c²
 </p>
 - $\sqrt{(S+B)/S}=4.4\%$ for L = 30 fb⁻¹

Top Polarization in Single Top Events

- EW-produced top quarks are highly polarized:
 - In the top rest frame, its spin points along the direction of the down (d) quark.
 - Restrict to t-channel single top:80% (69%) of the top (antitop) events have the 'd' quark in the final state. The angular distrib. of the charged lepton:

$$f(\cos\theta_{\lambda}) = \frac{1}{2} (1 + P\cos\theta_{\lambda})$$

- used signal samples with P=+1 and P=-1. Consider only W+jet background.
- Chisquare fit, letting the two P contributions float.
- → The error on polarization measurement is 1.6% for 10 fb⁻¹ (Dugan'sPh.D.thesis)
- W boson helicity measurement:
 - Again restrict to t-channel signal.
 - Measure $cos(\psi_l)$ distribution. ψ_l between the direction of the lepton in W rest frame and the direction of the W in the top rest frame.
 - → Three component fit: f_L , f_R , f_{Long} , with $f_L + f_R + f_{Long} = 1$
 - Uncertainties of the order 2-3% for 30 fb⁻¹ of data.

Conclusions

- CDF and Dø accumulated more events than in entire Run I (factor of 2).
- Preliminary CDF study from 107 pb⁻¹ sets promising single top limits
- However, many improvements needed if we are to observe single top in the next 2-3 years.
- Precision measurements of |V_{tb}|, as well as top polarization are not within (immediate) sight
- LHC will see very exciting results in the first (few) years of running:
 - → 10 –30 fb⁻¹ needed for observation in most searches.
 - Higher collider energy = considerable higher cross sections
- ATLAS and CMS single top studies are very mature
 - The Monte Carlo efforts are particularly strong: Top Rex, SingleTop.
- CDF/Dø can help with insight into systematics. Search strategies are already similar between Tevatron and CERN, but big improvements are just an idea away!